
 
 

   

  

  

   

  

  

   

  

 

  

   

   

2

3

4

5

6

7

8

9

10

11

12

1 The influence of age and cohort on the distribution of walleye pollock 

(Gadus chalcogrammus) in the eastern Bering Sea 

Duane E. Stevenson1, Stan Kotwicki1, James T. Thorson1, Giancarlo M. Correa2, and Troy 

Buckley1 

1National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way NE, 

Seattle, Washington 98115; E-mail: duane.stevenson@noaa.gov. 

2Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, Corvallis, Oregon 

97330. 

Corresponding author: Duane Stevenson (duane.stevenson@noaa.gov) 

1 

mailto:duane.stevenson@noaa.gov
mailto:duane.stevenson@noaa.gov


 
 

   

   

      

       

    

   

      

  

       

     

      

     

  

    

   

  

     

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Abstract: 

The spatial distributions of marine fish populations are influenced by environmental conditions, 

intrinsic properties of the populations, and prior distribution. The influence of these factors may 

not be consistent across age classes. For this study, age composition estimates for walleye 

pollock collected on bottom-trawl surveys in the Bering Sea were used to estimate range 

correlation indices, population centers of gravity, and effective area occupied. Age-specific 

density maps suggest a circular ontogenic migration during the summer feeding season, with the 

youngest and oldest groups most broadly distributed. Range correlation analysis among age 

groups and year classes provide clear evidence of a population cohort effect in the spatial 

distribution of the population. Variance decomposition analysis indicates that the in the spatial 

distribution of age groups during summer is influenced by the initial distribution of that cohort as 

recruits. Model-based analyses show that extrinsic temperature variables affect the youngest and 

oldest age classes the most, but provide no indication of age-related effects for intrinsic 

population factors. This study shows that both cohort and age-specific factors are important 

drivers of spatial distribution. 

Keywords: demographics, age composition, distribution, walleye pollock, modeling, VAST 
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Introduction 

The spatial distributions of fish populations are influenced by many factors. Environmental 

variables that define habitat suitability are clearly important. For example, physiological 

tolerances and resource availability directly affect the ability of a species to survive in a 

particular habitat. These factors have historically been used to define the fundamental and 

realized niche of a species, in the sense originally defined by Hutchinson (1957). However, other 

factors intrinsic to the population profoundly affect how a species occupies its realized niche. 

Recruitment dynamics, age structure, site fidelity, and behavioral preferences are some of the 

many intrinsic factors that may affect the spatial distribution of a population. Planque et al. 

(2011) list two categories of extrinsic drivers of spatial distribution (geographic attachment and 

environmental conditions), and four categories of intrinsic drivers (density-dependent habitat 

selection, spatial dependency, demographic structure, and species interactions). They also list a 

third type of driver (spatial memory), which is a product of the current and past distribution of 

the population and represents an extension of the entrainment hypothesis developed by Petitgas 

et al. (2006) and MacCall et al. (2019). 

Because the distribution of a population can be influenced by both extrinsic 

environmental and intrinsic population factors, and is also dependent on past distribution, 

modeling efforts seeking to describe and predict the spatial distribution of a population may be 

improved by including both types of factors as well as a “memory” component. Models 

incorporating a combination of extrinsic and intrinsic factors can be used to assess the relative 

impacts of these factors using a variance decomposition process, in which variance in the spatial 

distribution of the population is decomposed into extrinsic and intrinsic effects to assess which 

effects are dominant. This “variance decomposition” approach avoids an artificial accept-reject 
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outcome that results from hypothesis testing (Thorson and Minto 2015) and is appropriate in a 

world of multi-causality and tapering effects (Burnham and Anderson 2002). The relative effects 

of spatial memory on the distribution of a population can also be assessed through spatial 

comparisons of temporally distinct components of the population, such as recruitment classes 

(cohorts). 

In addition to assessing the relative importance of intrinsic and extrinsic factors on the 

spatial distribution of a population, it may be desirable to know how these factors affect different 

segments of that population. While the bulk of studies in spatial ecology have been focused on 

population centroids (Pinsky et al. 2013) or range edges (Fredston-Hermann et al. 2020), there 

has been comparatively little investigation of mechanisms defining shifts in the spatial 

distribution in age-specific (or size-specific) segments of fish populations (but see Marquez et al. 

2021). For species targeted by commercial fisheries, the distribution of desirable age (or size) 

classes, and the factors that drive the spatial distributions of those population segments, are of 

particular interest. 

The walleye pollock (Gadus chalcogrammus) population of the eastern Bering Sea 

supports one of the most valuable fisheries in the world, with approximately 1 million metric 

tons harvested commercially each year for the past 50 years (Ianelli et al. 2019). Although 

pollock biomass estimates have remained relatively stable in recent years, there is a growing 

body of evidence that the Bering Sea ecosystem is changing. The formation of seasonal sea ice 

that once acted as the prime driver of ecosystem functions in the Bering Sea has been declining 

as the water temperatures in the region have warmed (Stabeno et al. 2017). As the water warms, 

there is evidence that the pollock population of the eastern Bering Sea is moving north into the 
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Arctic (Stevenson and Lauth 2019) and west past the US-Russia convention line (O’Leary et al. 

2021). 

The distribution and movements of pollock in the eastern Bering Sea have been studied in 

a number of contexts. Spawning occurs in two major pulses, with the first in February-March 

largely centering in the southeastern Bering Sea near Bogoslof and Unimak Islands, and the 

second in April-May farther north, near the Pribilof Islands (Hinckley 1987; Kim et al. 1996; 

Bacheler et al. 2010). The distribution of juvenile pollock has been studied in relation to many 

factors, including the warm and cold stanzas that have dominated the eastern Bering Sea over the 

past 20 years (Duffy-Anderson et al. 2017), resulting overlap between juvenile pollock and 

predators/competitors (Thorson et al. 2021) and small-scale habitat heterogeneity (Benoit-Bird et 

al. 2013). Kotwicki et al. (2005) described seasonal feeding migrations in pollock, noting that as 

the water warms in the spring and summer, adult pollock migrate northwestward and onshore 

from their spawning grounds in the eastern Bering Sea. Their results also suggested that juvenile 

pollock complete similar annual migrations, but cover shorter distances. Ianelli (2005) briefly 

described ontogenic migration, with younger fish more common on the northwestern part of the 

EBS shelf and older fish moving progressively to the south and east of the EBS shelf. 

The walleye pollock is considered a semi-pelagic species, and the vertical distribution of 

pollock in the water column is complex. Early life stages are generally found near the surface 

(Smart et al. 2013, Parker-Stetter et al. 2015), but after the first year, they transition to midwater 

and demersal habitats. Mid-water acoustic surveys and bottom-trawl surveys in Alaska suggest 

that age-1 pollock tend to school close to the bottom, while age-2 and other juvenile pollock stay 

higher in the water column, and adults are primarily demersal (Duffy-Anderson, 2003, 

Honkalehto et al. 2010, Kotwicki et al. 2015, Lauth et al. 2019). The proportion of the population 

5 



 
 

   

    

      

  

   

  

     

  

   

  

  

 

   

   

   

     

    

     

   

   

  

  

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

available to the bottom trawl varies spatially, over time, and by age, although over 50% is 

available to the bottom trawl in any year previously documented (Monnahan et al. 2021). 

In this study, we seek to test three main questions about the distribution of walleye 

pollock in the eastern Bering Sea: 

1. Is there evidence of a memory/entrainment effect in the relative distributions of 

cohorts (recruitment classes) in the population? 

2. What are the relative influences of environmental conditions (year effects) and 

memory/entrainment (cohort effects) on the population center of distribution? 

3. Do intrinsic and extrinsic factors affecting the EAO by the population differ among 

age classes? 

We explore these questions using a combination of analyses that include model-based 

predictions of density for age-specific segments of the walleye pollock population of the eastern 

Bering Sea from 1982 through 2019. In addition, a variance decomposition procedure was used 

to assess the relative importance of survey year and cohort to the variance in spatial distribution 

among age-cohort combinations. The primary goal of these investigations was to evaluate the 

relative contributions of survey year (year of collection) and cohort (year of birth) to the spatial 

distributions of age-specific segments of the pollock population. The primary importance of this 

study is that it assesses the relative magnitude of intrinsic, extrinsic, and cohort effects 

influencing the spatial distribution of different age segments of a marine fish population. 

Materials and Methods 

Data collection and age composition estimates 
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Data used in this study were collected during bottom trawl surveys of the eastern Bering Sea 

shelf, conducted annually by the Alaska Fisheries Science Center (AFSC) of the U.S. National 

Marine Fisheries Service from 1982 through 2019 (e.g., Lauth et al. 2019). These fixed-station 

surveys used an otter trawl with an effective fishing height of approximately 16 m for pollock 

(Kotwicki et al. 2015). Thus, the spatial trends analyzed here apply only to the demersal portion 

of the population available to the trawl. The survey grid consists of 376 stations, each of which is 

sampled annually. At each station, random subsamples of length-frequency data were collected 

(totaling roughly 20,000–50,000 lengths per year), as well as otoliths (totaling roughly 1000– 

2000 otoliths per year) from either length-stratified (2006 and prior) or random (2007–2019) 

subsamples of the total catch. Age data were then combined with length abundance information 

to obtain age-specific abundances at each station using a model-based approach. This approach 

consisted of using continuation ratio logits (CRL) to model the probability of being a specific 

age at a given length, taking into account the spatial variability in size-at-age (Berg and 

Kristensen 2012; Correa et al. 2020). Techniques used at the AFSC to age pollock have been 

radiometrically validated up to age-8 (Kastelle and Kimura 2006), therefore all specimens with 

estimated ages higher than 8 (approximately 25% of all aged specimens) were combined into the 

“age-9+” class. 

A data set including density-at-age estimates for each age class, for each survey station, 

for each survey year was used to create a multispecies spatiotemporal model in VAST (Vector-

Autoregressive Spatio-temporal modeling package: Thorson and Barnett 2017), version 3.4.0, in 

which age classes were treated as separate species in a multivariate model. VAST uses Template 

Model Builder to identify maximum likelihood estimates (Kristensen et al. 2016), the stochastic 

partial differential equation (SPDE) method to rapidly approximate spatial correlations (Lindgren 
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et al. 2011), and a generalization of the delta-method to calculate standard errors for parameters 

and derived quantities (Tierney et al. 1989).  We specify gamma-distributed positive catch rates 

and the alternative “Poisson-linked” delta model using a log-link function for encounter 

probabilities. The region specified was “eastern_bering_sea”, corresponding to the spatial 

footprint of the annual bottom trawl survey operated by AFSC in the eastern Bering Sea. The 

spatial resolution was set at 500 knots, representing a relatively fine-scale mesh for density 

predictions that is still computationally feasible, and corresponds roughly with the spatial 

resolution of the samples (376 stations). We include both spatial and spatio-temporal 

components as well as an annual intercept for each of two linear predictors, and do not estimate 

any temporal autocorrelation in either intercepts or spatio-temporal components.  By avoiding 

any temporal autocorrelation, we ensure that resulting density predictions are “exchangeable” for 

each of the ages and year-within-age. This, in turn, justifies our statistical analysis of density 

patterns for each age and year, which we treat as independent for each age-year combination in 

the analyses.  

Outputs used from the VAST model included rasters (with the grid cell size of 

approximately 100 km2) of pollock density estimates by age (Supplementary File A), center of 

gravity location, and estimates of EAO by age (Thorson et al. 2016). Cumulative density plots 

for each age class were created by calculating the average estimated density across all years for 

each of the 5000 grid cells from the VAST output raster, then sorting grid cells in order of 

descending density and plotting the cells required to reach 75% of the cumulative average 

density. The 75% threshold for cumulative density was chosen to visualize contrasts between 

spatial distributions of age classes, and to align with the regional definition of “principal 

Essential Fish Habitat area” (see Laman et al. 2018, Fig. 8). Centers of gravity were obtained for 
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each age class for each year using biomass-weighted eastings and northings in Universal 

Transverse Mercator coordinates (see Thorson 2019: Table 2). Mean centers of gravity for each 

age class were calculated as the simple average of the latitude and longitude of the centers of 

gravity for each survey year. Longitude and latitude anomalies for each age-year combination 

were obtained by subtracting the mean longitude/latitude (in UTM coordinates) from the mean of 

the 38 longitude/latitude estimates for that age class. Temporal trends in COG (center of gravity) 

were depicted by plotting these anomalies for all age classes over the study period (1982–2019). 

VAST generates estimates of EAO for each age-year combination (see Thorson 2019: Table 2), 

which are calculated as the area required to contain the population at its biomass-weighted 

average density (Thorson et al. 2016). 

Question #1: Evidence of a cohort effect 

If the spatial distribution of pollock is being driven by contemporary factors, either intrinsic or 

extrinsic, operating simultaneously on the entire population, then we expect correlations among 

the distributions of all age classes within each year to be greater than correlations among 

different survey years. However, if there is a memory effect operating on different cohorts to 

influence the spatial distribution of pollock, then we expect correlations within cohorts (as they 

are repeatedly sampled in successive survey years) to be greater than those among different 

cohorts. We therefore used two metrics of range correlation, the global index of collocation 

(GIC) and Schoener’s D, to investigate spatial correlations among the distributions of pollock 

age groups. GIC uses pairwise comparisons of population centers of gravity as an indicator of 

large-scale similarity among distributions (Bez and Rivoirard 2000; Woillez et al. 2009; 

Kotwicki and Lauth 2013), while Schoener’s D (Schoener 1968) uses station-by-station pairwise 
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comparisons to assess fine-scale spatial similarity among distributions. We use both metrics, 

given that fine-scale overlap (measured by Schoener’s D) will capture high-resolution processes 

while regional overlap (measured by GIC) will capture low-resolution processes.  

Metrics of range correlation were calculated from the grid cell density predictions of the 

VAST model (5,000 grid cells). GIC values were calculated in R using the method of Kotwicki 

and Lauth (2013): 

Δ𝐶𝐶𝐶𝐶𝐶𝐶1,2
2 

(1) 𝐺𝐺𝐺𝐺𝐺𝐺1,2 = 1 − ,
Δ𝐶𝐶𝐶𝐶𝐶𝐶1,2

2+𝐼𝐼1+𝐼𝐼2 

where ΔCOG is the distance between COGs for a given pair of age-year groups, I1 is the 

dispersion for group 1 and I2 is the dispersion for group 2. The dispersion for each group is 

calculated as: 

𝑛𝑛∑ (Δ𝐶𝐶𝐶𝐶𝐶𝐶1,2)2𝑧𝑧1𝑖𝑖 𝑖𝑖=1 (2) 𝐺𝐺1 = ∑𝑛𝑛 
𝑖𝑖=1 𝑧𝑧1𝑖𝑖 

Schoener’s D values were calculated in R using the Species Association Analysis (spaa) 

package, version 0.2.1 (Zhang 2016): 

𝑛𝑛 (3) 𝐷𝐷 = 1 − 0.5 ∗ ∑𝑖𝑖=1 |𝑝𝑝𝑥𝑥,𝑖𝑖 − 𝑝𝑝𝑦𝑦,𝑖𝑖| 

where px,i and py,i are the proportions of age-year x and y, respectively, at station i. 

For each range correlation metric, GIC and Schoener’s D, a matrix of pairwise 

correlation statistics was generated for each age-year combination (9 ages * 38 data years = 342 

x 342 matrix). A one-tailed t-test was then performed to determine whether the mean of within-

year correlations for each age pairing (e.g., age-1 vs. age-2 from 1982, n = 38) was significantly 

higher than the mean of all possible age class correlations (e.g., age-1 from 1982 vs. age-2 from 

1985, n = 741). Significant results for these t-tests were interpreted to indicate significant spatial 

correlations between age classes within years. This same analysis was repeated for age-cohort 

combinations (e.g., age-2 specimens collected in 1985 would represent the 1983 cohort, also a 
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342 X 342 matrix), and significant results were interpreted to indicate significant spatial 

correlations between age classes within cohorts. 

Question #2: Relative importance of effects for center of gravity 

The relative importance of survey year and cohort to the variance explained in the linear model 

predicting latitude/longitude of the COG estimates by age was assessed using a variance 

decomposition procedure described in the R package relaimpo, which uses statistical metrics to 

evaluate the relative importance of the regressors (Grömping 2006). Relative importance was 

estimated using the following models: 

lm1: lm(Ndev~factor(Year)+factor(Cohort)) 

lm2: lm(Edev~factor(Year)+factor(Cohort)) 

where Ndev and Edev are northing and easting deviations from the mean COG for a given age 

class, and Year and Cohort are factors predicting distribution. The effect of Year is used to 

capture all known and unknown year-specific effects that influence pollock distribution 

including temperature (Kotwicki et al. 2005; Thorson et al. 2017; Eisner et al. 2020), light 

conditions (Kotwicki et al. 2015), fish density, fishing pressure, ecological teleconnections 

resulting from regional warm/cool conditions (Thorson et al. 2021), etc. The effect of Cohort is 

used to capture all cohort-specific effects that influence pollock distribution including specifics 

of cohort origination, cohort survival, multiyear effects on cohort distribution, differences in 

ontogenetic migrations between cohorts, and other cohort related variables. Quantification of an 

individual regressor’s contribution to these regression models was estimated using three metric 

outputs from the function calc.relimp in the R package relaimpo (Grömping 2006). The metric 

“first” represents variance explained by each predictor alone; the metric “last” in this case 
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represents additional variance explained by each predictor when added to the model after the 

variance explained by the first variable is accounted for; and the metric “lmg” is the average 

contribution to variance explained for both orders of predictors (Christensen 1992; Grömping 

2006). 

Question #3: Age-related factors influencing effective area occupied 

Finally, we seek to identify which intrinsic/extrinsic/memory effects are associated with larger or 

smaller EAO for each combination of age and year. To do so, we used a generalized additive 

modeling (GAM) procedure to assess the effects of some population parameters and 

environmental variables, including age-1 abundance, spawning stock biomass, mean surface 

temperature, cold pool area, and age class, on EAO. These models were constructed in R using 

the “gam” function of the mgcv package, version 1.8-31 (Wood 2017). Age-1 abundance and 

spawning stock biomass were obtained from the 2019 assessment of the walleye pollock stock in 

the eastern Bering Sea (Ianelli et al. 2019: Table 32). Water temperatures were recorded by a 

bathythermograph placed on the headrope of the net; surface temperature was recorded at -1 m 

depth, and bottom temperature was recorded while the net was on bottom in fishing 

configuration, ~3 m off bottom. Mean annual surface temperatures were calculated as the 

average of water temperature samples from each survey station sampled by AFSC’s eastern 

Bering Sea bottom trawl survey, weighted by the proportion of their assigned stratum area. Four 

different near-bottom temperature variables were tested in GAMs, including annual average 

bottom temperature, calculated in the same way as surface temperature, and three different cold 

pool area variables, calculated as in Kotwicki and Lauth (2013) for three different temperatures 

(0, 1, and 2°C). EAO estimates were weighted by 1/SE2 in the model to correct for uncertainty, 

12 



 
 

   

   

  

       

  

      

   

       

    

      

      

     

      

   

  

        

   

  

  

   

    

      

   

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

where SE is the estimated standard error generated by VAST, and weighting by precision 

accounts for heteroscedasticity when fitting the GAM model. 

The initial model investigated was: 

EAO ~ factor(age) + s(cpa, k=4) + s(temp, k=4) + s(ssb, k=4) + s(rec,  k=4), 

where EAO = effective area occupied (from VAST model, weighted by 1/SE2), age = age class, 

cpa = cold pool area (the near-bottom temperature variable), stemp = mean annual surface 

temperature, ssb = standing stock biomass, and rec = age-1 abundance. Smooth effects were 

restricted to a maximum of 4 knots to minimize the possibility of overfitting. First, the best of the 

four cold pool covariates (annual bottom temp, or cold pool area less than 0, 1, or 2°C) was 

chosen by comparing four potential versions of the initial model above, using Akaike 

Information Criterion (AIC). The model with the lowest AIC was used as the initial model for 

testing for differences between the smooth effects by age, using “by” argument (e.g., s(cpa, 

by=factor(age), k=4)). This age factor was added to initial model smooth covariates one by one 

and tested for model improvements using AIC. The “by” parameter was retained in the covariate 

for which the AIC was reduced the most. The process was repeated until no more reduction in 

AIC could be achieved or until all variables included the “by” argument. 

Results 

Describing age-specific densities 

The results of the VAST model show distinct differences in the spatial distribution of age classes 

of pollock in the eastern Bering Sea. Predicted density plots for all survey years combined 

(Fig.1) show that the youngest pollock (age-1) are on average broadly distributed across the shelf 

to the north of the Pribilof Islands from the inner domain to the shelf edge. Age-1 and age-2 
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pollock are rarely encountered south of the Pribilof Islands. Progressing through the juvenile 

stage (age-2 and 3), pollock are more concentrated near the shelf edge, becoming largely absent 

from the inner shelf and remaining most densely distributed to the north of the Pribilof Islands. 

Young adult pollock (age-4 through age-7) remain concentrated on the outer shelf, with their 

distribution moving slightly to the south and west with each successive age class. For the oldest 

age classes examined in this study (age-8 and age-9+), the distribution spreads back onto the 

middle shelf, and high densities of pollock are increasingly found in the southern Bering Sea 

near the Alaska Peninsula. 

Mean COG calculated for each age class over the survey period summarizes the 

distribution trends indicated in the density plots. These age-specific centers of gravity describe a 

u-shaped, or nearly circular trend in centers of distribution as pollock age (Fig. 2). The transition 

from age-1 to age-2 is marked by a notable northwestward shift in distribution, reflecting the 

increasing concentration of individuals near the shelf edge in the northern part of the survey area. 

All subsequent age transitions generally reflect a southward and eastward movement of the older 

segments of the population. Transitions from age-3 through age-8 indicate only minor shifts in 

distribution, and although the movement is directionally consistent, it appears gradual. The 

transition from age-8 to the oldest age class (age-9+) appears more significant. The COG for this 

oldest age group is shifted notably to the east, reflecting the spread of this population segment 

back onto the middle shelf as well as the increasing proportion of the population in the 

southeastern portion of the Bering Sea. 

In addition to differences in their population COG, pollock occupy varying amounts of 

space as they age. Mean estimates of EAO over the survey period indicate that age-1 pollock are 

highly dispersed, occupying much more EAO than subsequent year classes (Fig. 3). Older 
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juveniles (age-2 through age-4) are much more concentrated, occupying on average less than half 

the area of age-1 fish. Adult pollock (age-5 through age-9+), are progressively more dispersed, 

with the oldest age classes occupying the largest area. These trends are also visible in the density 

plots (Fig. 1). 

Our data also show evidence of some temporal trends in pollock distribution. For 

example, over the 38-year study period the COG averaged over all age classes of pollock moved 

significantly northward (Fig. 4), although longitude did not shift significantly. Furthermore, the 

average EAO has increased substantially, particularly over the last decade. 

Question #1: Evidence of a cohort effect 

Measures of spatial correlation based on range overlap metrics indicate strong correlations 

among age groups both within year and within cohort. Within year, GIC values were 

significantly correlated (Table 1) for all adjacent age groups (e.g., age-2 vs. age-3, age-3 vs. age-

4) as well as a few age groups separated by two years (e.g., age-4 vs. age-6). None of the more 

distant age groups (3 or more age classes apart) were significantly correlated. Schoener’s D 

values (Table 2) within year were significantly correlated for nearly all pairwise comparisons, 

regardless of age class, although age-1 and age-9+ comparisons were less universally significant. 

Many of the pairwise comparisons of spatial correlation within cohort were also significant. GIC 

values (Table 1) were significantly correlated among the majority of adjacent age groups, as well 

as several non-adjacent age groups (e.g., age-3 vs. age-6). Schoener’s D values (Table 2) 

demonstrated a similar pattern, with nearly all adjacent comparisons significant, as well as many 

of the non-adjacent comparisons. 
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Thus, the spatial distributions of pollock age classes were generally highly correlated 

within a survey year, particularly those of the adjacent age classes. This effect was more 

pronounced when measured using the finer-scale Schoener’s D statistic. Correlation patterns 

within a cohort were generally similar, indicating that the spatial distributions of individual 

cohorts are highly correlated as they progress through time, again particularly across a single age 

step. Significant pairwise correlations within a year indicate that the spatial distribution of age 

classes within the population is being driven by extrinsic or intrinsic factors operating 

simultaneously on the whole population, while the significant pairwise correlations within a 

cohort for the majority of cohorts indicate that the spatial distribution of those cohorts is, to some 

extent, driven by spatial memory or entrainment. For example, the distribution of age-3 pollock 

in 1990 was significantly influenced by the distribution of age-2 pollock in 1989. 

Question #2: Centers of gravity 

The linear models in which age-specific COG (decomposed into deviations from the mean 

latitude and longitude) are related to the factor variables “Year” and “Cohort” extend and clarify 

the results of the range correlation metrics. In both the latitude and longitude models, year and 

cohort contribute significantly to the overall variance of the model (Table 3) and explain the 

majority of variation in the data (> 60%). Furthermore, the relative contributions of the two 

factors are similar in both models, with year contributing approximately two-thirds of the 

variance, and cohort contributing approximately one-third. These results indicate that both year 

and cohort contribute significantly to variation in both the latitudinal and longitudinal axes of 

spatial variation in the distribution of pollock, though the magnitude of the year effect is clearly 

greater. 
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Question #3: Effective area occupied 

The results of the GAM modeling of EAO are presented in Tables 4 and 5. Of the near-bottom 

temperature variables tested (cold pool area < 0°C, < 1°C, < 2°C, or mean annual bottom temp), 

the cold pool area < 0°C resulted in the lowest AIC. Differences in the smooth effect by age were 

detected only for the environmental variables ‘cpa’ and ‘stemp’ (Table 4). Thus, in the final 

model: 

EAO ~ factor(age) + s(cpa, by=factor(age), k=4) + s(stemp, by=factor(age), k=4) + 

s(ssb, k=4) + s(rec, k=4). 

The final model explained a large proportion of the observed variation in EAO (80.6%). The 

relationship between age and EAO reflected the same trend as above (Fig. 3), with the youngest 

and oldest age classes occupying the most space, and the older juveniles (age-2 through age-4) 

being the most concentrated (Fig. 5A). The age factor alone explained 61.4% of the variation in 

EAO. For the population variables biomass (ssb) and age-1 abundance (rec) we did not detect 

differences between smooth terms by age, but the results indicated that lower values of these 

variables result in lower EAO (Fig. 5B, 5C). For biomass, results suggest that the EAO is smaller 

than average for ssb values lower than 2500 (= 2.5 million tons). For recruitment, results indicate 

that EAO is more extensive than average only for the six largest cohorts (based on age-1 

abundance).   

The effects of environmental factors on the EAO by pollock differed by age class. The 

effect of cold pool area was significant for age classes 1, 2, 7, 8, and 9+ (Fig. 6). In general, it 

appears that EAO declines with increasing cold pool area. The effect of the cold pool on EAO of 

age classes 3-6 was not significant and the partial effect was nearly constant, indicating that the 
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cold pool likely does not affect EAO for these ages. For surface temperature (Fig. 7), the 

nonlinear interaction between surface temperature and EAO was significant for most adult 

pollock (age-5 through age-9+), and partial effect plots showed a similar pattern of increasing 

EAO with increasing surface temperatures for all significant age classes. This result indicates 

that pollock of these ages are more concentrated in smaller areas in cooler temperatures, and 

more dispersed in warmer conditions. However, this effect appears to be most pronounced only 

for surface temperatures larger than 7°C, which indicates that this dispersion occurs only during 

warm summers. 

Discussion 

This analysis describes the spatial distribution of walleye pollock in their summer feeding 

habitat as a function of ontogeny and size. We also provide the first evidence for a cohort effect 

in the spatial distribution of the walleye pollock of the eastern Bering Sea, and show that 

intrinsic and extrinsic factors affect the spatial distribution of the population in age-specific 

ways. 

The youngest and oldest classes of walleye pollock are broadly dispersed across the 

continental shelf in the eastern Bering Sea, although they are rarely encountered in the southern 

portion of the survey range. In contrast, intermediate age classes are more concentrated in 

feeding areas near the shelf edge. Although ontogenetic migration has been widely demonstrated 

in marine fish species and has been previously examined in pollock (Bailey et al. 1999; Ianelli 

2005) in the Bering Sea, previous studies have not accounted for spatial variability in age 

structure. In contrast, our study accounted for spatiotemporal variability in age-length 

relationships by using model-based age composition estimation. Ignoring this variability can lead 
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to biased outcomes of assessment models (Correa et al. 2020) and in spatiotemporal analysis of 

ontogenetic migrations. 

Our results suggest that the youngest and oldest age classes of pollock undertake more 

limited summer feeding migrations than intermediate age classes, as they appear to be less 

concentrated in summer feeding areas as demonstrated by EAO by age. Due to their size and 

limited swimming performance, age-1 pollock have limited ability to cover large distances, and 

their wide dispersal across the EBS shelf, and their absence from the southeastern portion of the 

Bering Sea survey area, is likely a reflection of the distribution of the larval and age-0 population 

distribution, which is driven by ocean currents. This advective extrinsic factor varies among 

years (Wespestad et al. 2000). Kotwicki et al. (2005) also found that smaller pollock (< 29 cm, 

roughly corresponding to age-1 and age-2) do not aggregate along the shelf edge as much as 

older pollock. Larger juvenile and adult pollock can migrate over larger distances and form 

tighter, more pelagic aggregations. These aggregations form predominantly on the shelf edge, 

which is a primary pollock feeding ground (Kotwicki et al. 2005). As pollock mature, their 

summer distribution moves progressively to the south along the shelf edge. Eventually, older 

pollock disperse again over the shallow parts of the shelf. This dispersal coincides with the 

transition of pollock from predominantly pelagic prey to more diverse prey that consists of both 

pelagic and benthic animals (Buckley et al. 2016), limiting the requirement for an extensive 

feeding migration. Previous studies have also suggested that juvenile pollock move offshore and 

northward during the first few years of life, then generally move southward and back onto the 

shelf after age-3 (Bailey et al. 1999; Ianelli 2005). 

In addition to ontogenetic migration, our data show evidence of a recent northward shift 

of the overall pollock COG in the Bering Sea, particularly during 2016-2019 for most age 
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classes. In recent years, this northward shift in distribution was accompanied by an increase in 

EAO, which indicates that the recent expansion to the north does not coincide with 

corresponding reductions of the area occupied in the south. If the warming trend continues in the 

Bering Sea, we can expect further expansion of pollock distribution to the north (as demonstrated 

in recent pollock studies in the NBS; Stevenson and Lauth 2019). This may hamper the ability of 

the EBS bottom trawl survey to assess year-class strength and recruitment success, as was the 

case for the 1992 year class, much of which was advected outside the survey area (Wespestad et 

al. 2000; O’Leary et al. 2020). If further expansions to the north continue and the southern extent 

of pollock distribution remains unchanged, we may see a further increase in the EAO of the 

pollock population in the Bering Sea in the future. Such increases in summer EAO can 

negatively affect the commercial fisheries because fish are more dispersed, and fishing quotas 

require more time and effort to fill. This situation was observed in 2018–20 in the EBS pollock 

summer fishing season, when it took longer than usual to catch the quota (Ianelli et al. 2021). 

The effect of the expansion of the summer EAO on the population size and structure is unclear 

and requires further investigation. 

Our comparisons of spatial correlation among years and cohorts provide evidence of a 

population-level “cohort effect”. This effect is also clear from our decomposition of variance in 

the center of gravity among years and cohorts. Marquez et al. (2021) showed a cohort effect in 

the spatial autocorrelation in density for cod and haddock in the Barents Sea, and noted that this 

effect was increasingly prevalent in older age classes in both species. Our results show an 

analogous cohort effect in the temporal autocorrelation among age classes of pollock in the 

Bering Sea, though we do not see clear evidence that this effect is more prevalent among older 

age classes. The magnitude of the cohort effect demonstrated here is about half of the year effect, 
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so clearly it should not be omitted from studies of spatial dynamics in EBS pollock. Because our 

variance decomposition analysis has compartmentalized spatial correlation into interannual 

effects and cohort effects, and generalized across a large number of survey years, spatial variance 

explained by the cohort effect should be due primarily to the initial distribution of the cohort. 

This, in turn, should reflect the relative spawning success of the component spawning 

aggregations that comprise the Bering Sea pollock population. The fact that we show here a clear 

cohort effect implies that spawning success can differ among different spawning aggregations, 

and that these differences in spawning success may lead to persistent differences in the spatial 

distributions of cohorts as they recruit to the adult population. 

The presence of a persistent cohort effect may indicate that there is some level of 

metapopulation structure in the pollock of the Bering Sea. If this is the case, then mechanisms 

must exist to maintain the structure in a region without clearly defined geographic boundaries. 

These mechanisms could include physical oceanographic patterns, genetic predisposition and 

environmental imprinting, or entrainment by learning adult migratory patterns. Spawning 

aggregations of pollock in the EBS are broadly distributed in time and space (Hinckley 1987; 

Stahl and Kruse 2008). Their eggs and larvae are subject to variable physical transport 

(Wespestad et al. 2000) and mixing, resulting in multiple size-modes of larvae that overlap in 

geographic distribution across the EBS (Nishimura et al. 1996; Traynor and Smith 1996). Thus, 

larval retention in natal regions by physical oceanographic isolating mechanisms appears 

unlikely. If a genetic and/or imprinted predisposition exists for spawning within a particular area 

and time, then pollock would have a greater chance of spawning within aggregations of similarly 

predisposed pollock than with others. Alternatively, juvenile pollock may learn migration 

patterns by following adults to spawning locations, a process known as entrainment (Petitgas et 
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al. 2006), which could explain the increased area-occupied when spawning biomass is large 

(MacCall et al. 2019). Our study cannot distinguish between these and other specific behavioral 

mechanisms that may result in the spatio-temporal patterns identified here. However, the 

presence of a persistent cohort effect in the spatial distribution of the population suggests that 

this phenomenon requires more study, as the relative influences structuring mechanisms 

(genetic/environmental imprinting vs. behavioral entrainment) may have important implications 

for the ability of the species to colonize new habitat or recolonize historic spawning habitat. 

Extrinsic environmental factors are clearly important in determining the spatial 

distribution of walleye pollock. For example, our most effective measure of temperature 

conditions near the sea floor, the cold pool area (< 0°C), has an inverse relationship with the 

EAO by pollock on the Bering Sea shelf. In general, the more of the shelf is covered by the cold 

pool, the less of the shelf pollock occupy. This effect is also evident in the relationship of EAO 

to surface temperature, with pollock occupying more area on the shelf during years of warmer 

overall surface temperatures. In general, this makes sense, as several previous studies have 

concluded that adult pollock avoid low temperatures (Wyllie-Echeverria 1995; Wyllie-

Echeverria and Wooster 1998; Kotwicki 2005; Kotwicki and Lauth 2013), particularly < 0°C. 

Some authors have suggested that juvenile pollock may use the cold pool as a refuge from 

predatory pressures, including cannibalism by larger pollock (Hunsicker et al 2013, Uchiyama et 

al 2020). However, whether this avoidance is the result of a direct physiological response or an 

indirect response to ecological parameters such as prey populations or predator avoidance is still 

unclear. 

Our results also suggest that interannual temperature variations do not affect the spatial 

distribution of all ages of pollock in the same way. The effect of bottom temperature was 
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significant for the youngest and oldest age classes of pollock, but not intermediate age classes. In 

contrast, the effect of surface temperature was significant only for adults. These age-specific 

differences in the response of pollock populations to temperature could be due to several factors. 

Young pollock recruits are unable to escape colder temperatures (Buckley et al. 2016), but once 

swimming speed allows active schooling and cross-shelf migration, behavioral adaptations to 

maximize average feeding and survival success drive the distributions (Kotwicki et al. 2005). At 

larger sizes, walleye pollock become less susceptible to predation, less dependent on small 

pelagic prey (Buckley et al. 2016), more benthic in habit (Lynde 1984; Bakkala and Alton 1986; 

Traynor et al. 1990), and disperse more widely over the EBS shelf during summer feeding 

migrations (Kotwicki et al. 2005). Additionally, there is evidence that the influence of 

temperature on bioenergetic parameters, such as respiration and digestion, declines with 

increasing size in pollock (Buckley and Livingston 1994), so larger pollock may be less 

metabolically dependent on optimum temperatures. Finally, the fact that bottom and surface 

temperature have different relationships to pollock distribution may be due to the differing 

seasonal dynamics of these environmental parameters. Surface temperature changes steadily over 

the summer as the surface waters warm due to increased seasonal solar heating, while bottom 

temperature, and particularly cold pool area, is driven more by the ice conditions of the previous 

winter and often persists through much or all of the summer (Stabeno et al. 2007). 

In addition to extrinsic factors, intrinsic population factors affect the spatial distribution 

of walleye pollock, though not to the same extent. If density-dependent factors influence the 

spatial distribution of pollock, then we would expect to see a strong relationship between 

standing stock biomass (the overall size of the population) and the geographic area occupied by 

the population. Our results do not show clear evidence of this effect at higher population levels, 
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but there is some indication that the area occupied by the population does contract when the 

overall biomass is particularly low. Of course, pollock may expand their range into neighboring 

regions at high abundance levels (e.g., Tsugi 1989; Stepanenko 1997), so at times the population 

is likely expanding outside the survey area, into the northern Bering Sea, south into the Gulf of 

Alaska, or west past the US-Russia convention line (O’Leary et al. 2021). If new recruits drive 

the spatial distribution of the population, we would expect to see a strong relationship between 

age-1 abundance and area occupied, assuming that the proportion of the population in the survey 

area remains constant. Again, our results do not show clear evidence of this effect except for the 

few largest cohorts in the time series, and adding an age interaction to the recruitment term in the 

model degraded the fit. In fact, age-1 abundance was not significantly related to the area 

occupied by the age-1 segment of the population. This suggests that either age-1 abundance is 

not reaching sufficient levels for density to become limiting, or that more of the population 

moves outside the survey area at higher abundance levels. 

Although this study provides insight into the factors influencing the spatial distribution of 

pollock in the Bering Sea, the analysis has some important limitations. First, the availability of 

pollock to the survey trawl may be partially size-dependent. If age groups migrate differently 

within the survey area, as this study and Kotwicki et al. (2005) suggest, then it is also possible 

that the proportions of the population within the survey area, and therefore available to the trawl 

survey, are not consistent among population segments and survey years. Additionally, the 

vertical distribution of pollock in the water column largely influences their availability to the 

bottom trawl gear. This vertical distribution may differ substantially among different age classes 

of pollock, and the proportion of the population near the bottom varies both spatially and over 

time (Monnahan et al. 2021). This study only examines the distribution of pollock available to 
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the bottom trawl survey, and subadult pollock in the 20-40cm size range are less commonly 

encountered on AFSC bottom trawl surveys (Lauth et al. 2019). Therefore, estimates of the 

spatial distribution for these age classes may be more uncertain than those of the other age 

classes. We recommend additional research conducting similar analyses using a joint model of 

bottom trawl and acoustic data to assess the pelagic portion of the population as well. 

Secondly, our analyses do not address the possibility of time-lagged effects of intrinsic 

and extrinsic factors. For example, the cold pool area in the survey year 2002 may have affected 

the spatial distribution of the pollock population in 2003. Finally, the precision of density-at-age 

estimation declines with species age class. Although our method of estimating age compositions 

accounts for spatial differences in growth rates, the fact remains that the age-length-key assigns 

larger pollock to an age class with less precision. This lack of precision may affect on the power 

of our analyses to detect factors of influence for the older age classes. 

Overall, the results of this study indicate that inter-annual variability in the spatial 

distribution of the walleye pollock population in the eastern Bering Sea is strongly influenced by 

extrinsic environmental factors, but that the population distribution also has a cohort component 

that explains nearly one-third of the variance in center of gravity. Furthermore, this study shows 

that intrinsic and extrinsic factors affect different age groups of the population in different ways. 

Thus, when assessing the spatiotemporal distribution dynamics of marine fish populations, it is 

essential not only to model intrinsic factors, extrinsic factors, and spatial cohort components, but 

also to consider variability in how these factors influence the distribution of different age classes 

in the population. 
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FIGURE CAPTIONS 

Figure 1. Plots of 75% cumulative estimated density (lat/long projected in NAD83), averaged 

over the survey period (1982-2019), for age classes of pollock. Plus signs (+) indicate the mean 

center of gravity for each age class, averaged over the survey period. 

Figure 2. Estimated centers of gravity for each age class of pollock (lat/long projected in 

NAD83), averaged over the survey period (1982-2019). 

Figure 3. Estimates of effective area occupied (+/- 2SE) for each age class of pollock, averaged 

over the survey period (1982-2019). 

Figure 4. Temporal trends in centers of gravity by latitude (top) and longitude (center), as well as 

effective area occupied (bottom) for all age classes of pollock. 

Figure 5. Partial effect plots from selected GAM model showing relationships between: A) age 

class and effective area occupied (EAO); B) standing stock biomass and EAO; and C) age 1 

abundance and EAO for pollock in the eastern Bering Sea. 

Figure 6. Partial effect plots from selected GAM model showing relationships between the 

estimated area of the cold pool (km2 less than 0°C) and effective area occupied (EAO) for all 

ages of pollock in the eastern Bering Sea. 
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Figure 7. Partial effect plots from selected GAM model showing relationships between the mean 

annual surface temperature and effective area occupied (EAO) for all ages of pollock in the 

eastern Bering Sea. 

37 



 

age1   
age1    

age2  
 0.04 

age3  
 0.47 

age4  
 0.75 

age5  
 0.67 

age6  
 0.72 

age7  
 0.38 

age8  
 0.18 

age9  
 0.34 

age2   0.07    0.02  0.05  0.07  0.16  0.23  0.33  0.44 
age3   0.52  0.07    <0.01  0.05  0.30  0.32  0.47  0.58 
age4   0.45  0.19  <0.01    <0.01  <0.01  0.08  0.40  0.61 
age5   0.43  0.08  <0.01  <0.01    <0.01  <0.01  0.07  0.40 
age6   0.63  0.15  <0.01  <0.01  <0.01    <0.01  <0.01  0.29 
age7   0.26  0.20  0.09  0.04  <0.01  <0.01    <0.01  0.02 
age8   0.26  0.07  0.31  0.37  0.10  <0.01  <0.01    <0.01 
age9   0.49 
 

 0.51  0.74  0.83  0.70  0.55  0.10  0.18   

Table 1. P values relating pairwise comparisons of global index of colocation (GIC) within year  

(above diagonal) or within cohort (below diagonal) to pairwise comparisons among  age classes  

for all  years/cohorts. Significant P values (<0.05, in bold) suggest  greater  correlation among age  

classes within  year/cohort.  



 

age1   
age1    

age2  
 <0.01 

age3  
 <0.01 

age4  
 0.08 

age5  
 0.13 

age6  
 0.19 

age7  
 0.20 

age8  
 0.14 

age9  
 0.16 

age2   0.13    <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  0.07 
age3   0.33  <0.01    <0.01  <0.01  <0.01  <0.01  <0.01  0.16 
age4   0.28  0.05  <0.01    <0.01  <0.01  <0.01  <0.01  0.05 
age5   0.15  0.10  <0.01  <0.01    <0.01  <0.01  <0.01  <0.01 
age6   0.31  0.01  0.02  <0.01  <0.01    <0.01  <0.01  <0.01 
age7   0.37  0.13  <0.01  0.03  <0.01  <0.01    <0.01  <0.01 
age8   0.39  0.13  0.15  0.07  0.06  <0.01  <0.01    <0.01 
age9   0.56 
 

 0.54  0.55  0.73  0.59  0.56  0.01  <0.01   

Table 2. P values relating pairwise comparisons of Schoener’s  D within year (above diagonal) or  

within cohort (below diagonal) to pairwise comparisons among  age classes for all  years/cohorts.  

Significant P values (<0.05, in bold) suggest  greater  correlation among age classes within  

year/cohort.  



 

 first  last  average  
  Latitude deviation ~ factor(Year) + factor(Cohort) 

  
 Total variance explained: 0.633  

Factor(Year)   0.420  0.377  0.399 
Factor(Cohort)   0.256  0.213  0.235 
 

  Longitude deviation ~ factor(Year) + factor(Cohort) 
  

 Total variance explained: 0.610  
Factor(Year)   0.443  0.363  0.403 
Factor(Cohort)   0.247  0.168  0.208 

 

Table 3. Summary of variance decomposition, in which age-specific centers of gravity  

(decomposed into latitude and longitude) are related to the  factor  variables:  year and cohort.  First 

= variance explained  by each  predictor alone, last = variance explained when the predictor  is 

added to the model  as second.  
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cold pool area       
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 80.9 
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 8104.2 
 8125.2 

  

Table 4. Summary of variable selection process for the GAM modeling effective area occupied: “s” = variable modeled as  a smooth  

term; “f” = variable modeled as a factor;  “by=age” = variable modeled  as a  factor-smooth interaction with “age” as the factor.  Asterisk  

indicates the final preferred model, using AIC  as the optimality criterion  (in which a lower value indicates a more optimized model).  
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